Therapeutic Advances in Ophthalmology (Mar 2022)

Agreement in anterior segment measurements between swept-source and Scheimpflug-based optical biometries in keratoconic eyes: a pilot study

  • Evangelia Chalkiadaki,
  • Panos S. Gartaganis,
  • Thomas Ntravalias,
  • Ioannis Giannakis,
  • Evangelos Manousakis,
  • Efthymios Karmiris

DOI
https://doi.org/10.1177/25158414211063283
Journal volume & issue
Vol. 14

Abstract

Read online

Background: Cataract surgery in keratoconic patients is challenging because of the corneal distortion, which can lead to inaccurate keratometry readings. This study is a comparison of the accuracy of keratometry readings by two types of devices in a tertiary hospital. Purpose: To evaluate the comparability of corneal power measurements, anterior chamber depth (ACD), and white-to-white (WTW) distance between Scheimpflug-based tomography (Pentacam AXL; OCULUS GmbH, Wetzlar, Germany) and swept-source optical biometry (IOLMaster 700; Carl Zeiss Meditec AG, Jena, Germany) in patients with keratoconus. Methods: This pilot, prospective, interinstrument reliability study included 30 keratoconic eyes of 15 individuals who had not undergone any kind of corneal surgery. Standard K and total refractive power (TK ® ) of the flattest and steepest axes of the IOLMaster 700 were compared with the standard keratometry (SimK), true net power (TNP), equivalent keratometer readings (EKR), and total corneal refractive power (TCRP) of the Pentacam. The Bland–Altman analysis was used to evaluate the agreement between the measurements of both devices. The paired-samples t -test and the Wilcoxon signed-rank test were performed to compare the mean values of the variables obtained with the devices. Results: The K1 value of the IOLMaster 700 was significantly higher from EKR K1 along the 3-mm (mean difference: 0.79 diopters, p = 0.01), 4-mm (mean difference: 1.01 D, p = 0.01), and 4.5-mm zones (mean difference: 1.20 D, p = 0.01) and TNP K1 along the 3-mm (mean difference: 0.88 D, p < 0.001) and 4-mm zones (mean difference: 0.97 D, p < 0.001). The TK1 value was significantly higher from EKR K1 along the 2-mm (mean difference: 0.42 D, p = 0.04), 3-mm (mean difference: 0.83 D, p = 0.003), 4-mm (mean difference: 1.05 D, p = 0.004), and 4.5-mm zones (mean difference: 1.24 D, p = 0.005) and TNP K1 along the 3-mm (mean difference: 0.92 D, p < 0.001) and 4-mm zones (mean difference: 1.01 D, p < 0.001). The K2 value of the IOLMaster 700 was significantly higher from TK2 (mean difference: 0.11 D, p = 0.04) and all the corresponding variables of the Pentacam device. The TK2 value was significantly higher from all the corresponding variables of the Pentacam device. The Pentacam also yielded significantly lower values for the WTW distance (mean difference: 0.31 mm, p < 0.001) and no significant difference in terms of ACD values ( p = 0.9). Conclusion: The IOLMaster measured significantly greater keratometry readings in the steep axis for all the variables studied. The keratometry and WTW measurements of the investigated devices cannot be used interchangeably in keratoconus.