Journal of Applied and Computational Mechanics (Apr 2020)
An Analytical Approach of Nonlinear Thermo-mechanical Buckling of Functionally Graded Graphene-reinforced Composite Laminated Cylindrical Shells under Compressive Axial Load Surrounded by Elastic Foundation
Abstract
This paper deals with an analytical approach to predict the nonlinear buckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compressive load surrounded by Pasternak’s elastic foundation in a thermal environment. Piece-wise functionally graded graphene-reinforced, composite layers are sorted with different types of graphene distribution. The governing equations are established by using Donnell’s shell theory with von Kármán nonlinearity terms and three-term solution of deflection is chosen for modeling the uniform deflection of pre-buckling state, linear and nonlinear deflection of post-buckling state. Galerkin method is applied to determine the critical axial compressive buckling load expression, post-buckling load-deflection and load-end shortening relations of the shell. The effects of environment temperature, foundation, geometrical properties, and graphene distribution on buckling behavior of shell, are numerically evaluated.
Keywords