Sensors (Aug 2024)

Leakage Identification of Underground Structures Using Classification Deep Neural Networks and Transfer Learning

  • Wenyang Wang,
  • Qingwei Chen,
  • Yongjiang Shen,
  • Zhengliang Xiang

DOI
https://doi.org/10.3390/s24175569
Journal volume & issue
Vol. 24, no. 17
p. 5569

Abstract

Read online

Water leakage defects often occur in underground structures, leading to accelerated structural aging and threatening structural safety. Leakage identification can detect early diseases of underground structures and provide important guidance for reinforcement and maintenance. Deep learning-based computer vision methods have been rapidly developed and widely used in many fields. However, establishing a deep learning model for underground structure leakage identification usually requires a lot of training data on leakage defects, which is very expensive. To overcome the data shortage, a deep neural network method for leakage identification is developed based on transfer learning in this paper. For comparison, four famous classification models, including VGG16, AlexNet, SqueezeNet, and ResNet18, are constructed. To train the classification models, a transfer learning strategy is developed, and a dataset of underground structure leakage is created. Finally, the classification performance on the leakage dataset of different deep learning models is comparatively studied under different sizes of training data. The results showed that the VGG16, AlexNet, and SqueezeNet models with transfer learning can overall provide higher and more stable classification performance on the leakage dataset than those without transfer learning. The ResNet18 model with transfer learning can overall provide a similar value of classification performance on the leakage dataset than that without transfer learning, but its classification performance is more stable than that without transfer learning. In addition, the SqueezeNet model obtains an overall higher and more stable performance than the comparative models on the leakage dataset for all classification metrics.

Keywords