Remote Sensing (Oct 2021)

TRS: Transformers for Remote Sensing Scene Classification

  • Jianrong Zhang,
  • Hongwei Zhao,
  • Jiao Li

DOI
https://doi.org/10.3390/rs13204143
Journal volume & issue
Vol. 13, no. 20
p. 4143

Abstract

Read online

Remote sensing scene classification remains challenging due to the complexity and variety of scenes. With the development of attention-based methods, Convolutional Neural Networks (CNNs) have achieved competitive performance in remote sensing scene classification tasks. As an important method of the attention-based model, the Transformer has achieved great success in the field of natural language processing. Recently, the Transformer has been used for computer vision tasks. However, most existing methods divide the original image into multiple patches and encode the patches as the input of the Transformer, which limits the model’s ability to learn the overall features of the image. In this paper, we propose a new remote sensing scene classification method, Remote Sensing Transformer (TRS), a powerful “pure CNNs → Convolution + Transformer → pure Transformers” structure. First, we integrate self-attention into ResNet in a novel way, using our proposed Multi-Head Self-Attention layer instead of 3 × 3 spatial revolutions in the bottleneck. Then we connect multiple pure Transformer encoders to further improve the representation learning performance completely depending on attention. Finally, we use a linear classifier for classification. We train our model on four public remote sensing scene datasets: UC-Merced, AID, NWPU-RESISC45, and OPTIMAL-31. The experimental results show that TRS exceeds the state-of-the-art methods and achieves higher accuracy.

Keywords