Journal of Cardiovascular Magnetic Resonance (Oct 2017)
Left ventricular geometry predicts ventricular tachyarrhythmia in patients with left ventricular systolic dysfunction: a comprehensive cardiovascular magnetic resonance study
Abstract
Abstract Background Most patients with implantable cardioverter-defibrillator (ICD) implantation fail to utilize the device resulting in increasing societal costs and patient exposure to device morbidity. We sought to determine whether volumetric cardiovascular magnetic resonance (CMR) left ventricular (LV) spherical remodeling predicts future ventricular arrhythmias in primary ICD patients with reduced LV ejection fraction (EF). Methods Sixty-eight consecutive patients with transthoracic echocardiographic LVEF <35% referred for CMR prior to ICD implantation for primary prevention of sudden death were identified. Sphericity index was measured as the ratio of LV end-diastolic volume (from cine short axis stack) to the volume of a sphere with a LV end-diastolic 4-chamber length diameter. Results During a median follow-up of 55 months (interquartile range; 28–88), 15 patients (22%) received appropriate ICD therapy. Multivariable Cox’s proportional hazard modeling identified increased CMR-derived sphericity index as the strongest independent predictor of appropriate ICD therapy (hazard ratio [HR], 1.09; 95% confidence interval [CI], 1.02 to 1.16; p = 0.007). In addition, dichotomized volumetric CMR-derived sphericity index ≥0.57 carried a 4-fold hazard risk for appropriate ICD therapy, controlling for age and LVEF (HR, 4.49; 95% CI, 1.53 to 13.21; p = 0.006). When sphericity index, LVEF and mass index were used in combination, important incremental prognostic information was achieved (net reclassification improvement, 0.42; 95% CI, 0.06 to 0.77). Conclusions The combined assessment of LV geometry, mass index and systolic function may provide incremental prognostic information regarding ventricular arrhythmia requiring appropriate ICD therapy in primary prevention patients with reduced LVEF.
Keywords