Scientific Reports (Jan 2021)
An ab initio study of the magnetic properties of strontium hexaferrite
Abstract
Abstract The magnetic properties of $${\text{SrFe}}_{12}{\text{O}}_{19}$$ SrFe 12 O 19 , a paradigmatic hexaferrite for permanent magnet applications, have been addressed in detail combining density functional theory including spin–orbit coupling and a Hubbard U term with Monte Carlo simulations. This multiscale approach allows to estimate the Néel temperature of the material from ab initio exchange constants, and to determine the influence of different computational conditions on the magnetic properties by direct comparison versus available experimental data. It is found that the dominant influence arises from the choice of the Hubbard U term, with a value in the 2–3 eV range as the most adequate to quantitatively reproduce the two most relevant magnetic properties of this material, namely: its large perpendicular magnetocrystalline anisotropy and its elevated Néel temperature.