Sensors (Oct 2024)
Deep-Learning-Based Real-Time Passive Non-Line-of-Sight Imaging for Room-Scale Scenes
Abstract
Non-line-of-sight imaging is a technique for reconstructing scenes behind obstacles. We report a real-time passive non-line-of-sight (NLOS) imaging method for room-scale hidden scenes, which can be applied to smart home security monitoring sensing systems and indoor fast fuzzy navigation and positioning under the premise of protecting privacy. An unseen scene encoding enhancement network (USEEN) for hidden scene reconstruction is proposed, which is a convolutional neural network designed for NLOS imaging. The network is robust to ambient light interference conditions on diffuse reflective surfaces and maintains a fast reconstruction speed of 12.2 milliseconds per estimation. The consistency of the mean square error (MSE) is verified, and the peak signal-to-noise ratio (PSNR) values of 19.21 dB, 15.86 dB, and 13.62 dB are obtained for the training, validation, and test datasets, respectively. The average values of the structural similarity index (SSIM) are 0.83, 0.68, and 0.59, respectively, and are compared and discussed with the corresponding indicators of the other two models. The sensing system built using this method will show application potential in many fields that require accurate and real-time NLOS imaging, especially smart home security systems in room-scale scenes.
Keywords