Molecules (Mar 2020)

New Selective Progesterone Receptor Modulators and Their Impact on the RANK/RANKL Complex Activity

  • Katarzyna Błaszczak-Świątkiewicz

DOI
https://doi.org/10.3390/molecules25061321
Journal volume & issue
Vol. 25, no. 6
p. 1321

Abstract

Read online

Breast cancer depends on women’s age. Its chemotherapy and hormone therapy lead to the loss of bone density and disruption of the skeleton. The proteins RANK and RANKL play a pivotal role in the formation of osteoclasts. It is also well established that the same proteins (RANK and RANKL) are the main molecules that play an important role in mammary stem cell biology. Mammary stem cells guarantee differentiation of the epithelial mammary cells, the growth of which is regulated by the progesterone-induced RANKL signaling pathway. The crosstalk between progesterone receptor, stimulated by progesterone and its analogues results in RANKL to RANK binding and activation of cell proliferation and subsequently unlimited expansion of the breast cancer cells. Therefore downstream regulation of this signaling pathway is desirable. To meet this need, a new class of selective estrogen receptor modulators (SPRMs) with anti- and mesoprogestin function were tested as potential anti-RANK agents. To establish the new feature of SPRMs, the impact of tested SPRMs on RANK-RANKL proteins interaction was tested. Furthermore, the cells proliferation upon RANKL stimulation, as well as NFkB and cyclin D1 expression, induced by tested SPRMs were analyzed. Conducted experiments proved NFkB expression inhibition as well as cyclin D1 expression limitation under asoprisnil and ulipristal treatment. The established paracrine anti-proliferative activity of antiprogestins together with competitive interaction with RANK make this class of compounds attractive for further study in order to deliver more evidence of their anti-RANK activity and potential application in the breast cancer therapy together with its accompanied osteoporosis.

Keywords