Heliyon (Oct 2024)

Structural and physiological functions of Caenorhabditis elegans epidermis

  • Enhui Wang,
  • Yanfei Jiang,
  • Chunyue Zhao

Journal volume & issue
Vol. 10, no. 19
p. e38680

Abstract

Read online

Research on the skin is continuously evolving, and it is imperative to select a streamlined and efficient research model. Caenorhabditis elegans is a free-leaving nematode whose epidermis serves as the primary barrier epithelium, composed of a collagen matrix. Differentiation of the epidermis begins in the middle of embryonic development, including polarization of the cytoskeleton and formation of cell junctions. Cuticle secretion is one of the main developmental and physiological features of the epidermis. Mutations in the collagen genes of individual worms lead to cuticle defects, thereby changing the shape of the animals. The complete genome sequence of C. elegans indicates that more than 170 different collagen genes may be related to this structure. Collagen is a structural protein that plays an important role in the development of extracellular matrix. Different collagen genes are expressed at different stages of matrix synthesis, which may help form specific interactions between different collagens. The differentiated epidermis also plays a key role in the transmission of hormonal signals, fat storage, and ion homeostasis and is closely related to the development and function of the nervous system. The epidermis also provides passive and active defenses against pathogens that penetrate the skin and can repair wounds. In addition, age-dependent epidermal degeneration is a prominent feature of aging and may affect aging and lifespan. This review we highlight recent findings of the structure and related physiological functions of the cuticle of C. elegans. In contrast to previous studies, we offer novel insights into the utilization of C. elegans as valuable models for skin-related investigations. It also encourages the use of C. elegans as a skin model, and its high-throughput screening properties facilitate the acceleration of fundamental research in skin-related diseases.

Keywords