Scientific Reports (Jul 2024)
Additive positive effect of warming and elevated nitrogen deposition on Sphagnum biomass production at mid-latitudes
Abstract
Abstract Global warming and increased atmospheric nitrogen (N) deposition can adversely impact Sphagnum moss populations and ecological functions in peatlands. Based on the anticipated increases in temperature and N levels at global scale, we investigated the effects of simultaneous warming and N treatment on growth and ecophysiological activity of Sphagnum papillosum, a predominant moss at mid-latitudes, utilizing a growth chamber experiment. Warming treatments increased the maximum yield of photosystem II (Fv/Fm) of S. papillosum while decreasing the stable carbon isotope ratio. However, warming treatment alone did not cause significant changes in the biomass increase from that of the control. Regarding N treatment, the low N treatment decreased Fv/Fm under the current temperature but did not affect the biomass increase. In contrast to these results, a simultaneous warming and high N treatment significantly enhanced the biomass production compared to that of the control, exhibiting additive effect of warming and high N treatment on Sphagnum biomass production. These responses were attributed to the improved photosynthetic performances by warming and N treatment. The results of this study contribute to the prediction of Sphagnum responses to warming and changes in N deposition.
Keywords