Journal of Orthopaedic Surgery and Research (Nov 2019)

Enhancement of the effects of intermittent parathyroid hormone (1-34) by bone morphogenetic protein in a rat femoral open fracture model

  • Shozo Kanezaki,
  • Masashi Miyazaki,
  • Toshinobu Ishihara,
  • Naoki Notani,
  • Tetsutaro Abe,
  • Yuhta Tsubouchi,
  • Masashi Kataoka,
  • Hiroshi Tsumura

DOI
https://doi.org/10.1186/s13018-019-1470-9
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background Nonunion in cases of open fracture is common. Both bone morphogenetic protein 2 (BMP-2) and parathyroid hormone (PTH) have been used to enhance bone healing. We investigated the combination of BMP-2 and PTH and examined the effects on a rat model of open femoral fractures. Methods Group I (n = 11) was implanted with control carrier. Group II (n = 12) was implanted with carrier containing 1 μg of recombinant human BMP-2 (rhBMP-2). Group III (n = 12) was implanted with carrier alone, followed by injections of PTH 1-34. Group IV (n = 11) was implanted with carrier containing 1 μg of rhBMP-2, followed by injections of PTH 1-34. Group V (n = 11) was implanted with carrier containing 10 μg of rhBMP-2. Group VI (n = 11) was implanted with carrier containing 10 μg of rhBMP-2, followed by injections of PTH 1-34. Rats were euthanized after 8 weeks, and their fractured femurs were explanted and assessed by manual palpation, radiographs, micro-computerized tomography, and histological analysis. Results Manual palpation tests showed that the fusion rates of groups III (66.7%), IV (63.6%), V (81.8%), and VI (81.8%) were considerably higher than those of group I. Groups V and VI had higher radiographic scores compared to group I. Micro-CT analysis revealed enhanced bone marrow density expressed as bone volume/tissue volume in groups V (61.88 ± 3.16%) and VI (71.14 ± 3.89%) versus group I (58.26 ± 1.86%). A histological analysis indicated that group VI had enhanced remodeling. Conclusion The combination of abundant rhBMP-2 and PTH enhanced bone healing and remodeling of newly formed bone in a rat femoral open fracture model.

Keywords