PLoS ONE (Jan 2009)

Optimized quantification of fragmented, free circulating DNA in human blood plasma using a calibrated duplex real-time PCR.

  • Martin Horlitz,
  • Annabelle Lucas,
  • Markus Sprenger-Haussels

DOI
https://doi.org/10.1371/journal.pone.0007207
Journal volume & issue
Vol. 4, no. 9
p. e7207

Abstract

Read online

BACKGROUND: Duplex real-time PCR assays have been widely used to determine amounts and concentrations of free circulating DNA in human blood plasma samples. Circulatory plasma DNA is highly fragmented and hence a PCR-based determination of DNA concentration may be affected by the limited availability of full-length targets in the DNA sample. This leads to inaccuracies when counting PCR target copy numbers as whole genome equivalents. METHODOLOGY/PRINCIPAL FINDINGS: A model system was designed allowing for assessment of bias in a duplex real-time PCR research assay. We collected blood plasma samples from male donors in pools of 6 to 8 individuals. Circulatory plasma DNA was extracted and separated by agarose gel electrophoresis. Separated DNA was recovered from the gel in discrete size fractions and analyzed with different duplex real-time PCR Taqman assays detecting a Y chromosome-specific target and an autosomal target. The real-time PCR research assays used differed significantly in their ability to determine the correct copy number ratio of 0.5 between Y chromosome and autosome targets in DNA of male origin. Longer PCR targets did not amplify quantitatively in circulatory DNA, due to limited presence of full-length target sequence in the sample. CONCLUSIONS: PCR targets of the same small size are preferred over longer targets when comparing fractional circulatory DNA concentrations by real-time PCR. As an example, a DYS14/18S duplex real-time PCR research assay is presented that correctly measures the fractional concentration of male DNA in a male/female mixture of circulatory, fragmented DNA.