Sensors (May 2022)

Road and Railway Smart Mobility: A High-Definition Ground Truth Hybrid Dataset

  • Redouane Khemmar,
  • Antoine Mauri,
  • Camille Dulompont,
  • Jayadeep Gajula,
  • Vincent Vauchey,
  • Madjid Haddad,
  • Rémi Boutteau

DOI
https://doi.org/10.3390/s22103922
Journal volume & issue
Vol. 22, no. 10
p. 3922

Abstract

Read online

A robust visual understanding of complex urban environments using passive optical sensors is an onerous and essential task for autonomous navigation. The problem is heavily characterized by the quality of the available dataset and the number of instances it includes. Regardless of the benchmark results of perception algorithms, a model would only be reliable and capable of enhanced decision making if the dataset covers the exact domain of the end-use case. For this purpose, in order to improve the level of instances in datasets used for the training and validation of Autonomous Vehicles (AV), Advanced Driver Assistance Systems (ADAS), and autonomous driving, and to reduce the void due to the no-existence of any datasets in the context of railway smart mobility, we introduce our multimodal hybrid dataset called ESRORAD. ESRORAD is comprised of 34 videos, 2.7 k virtual images, and 100 k real images for both road and railway scenes collected in two Normandy towns, Rouen and Le Havre. All the images are annotated with 3D bounding boxes showing at least three different classes of persons, cars, and bicycles. Crucially, our dataset is the first of its kind with uncompromised efforts on being the best in terms of large volume, abundance in annotation, and diversity in scenes. Our escorting study provides an in-depth analysis of the dataset’s characteristics as well as a performance evaluation with various state-of-the-art models trained under other popular datasets, namely, KITTI and NUScenes. Some examples of image annotations and the prediction results of our 3D object detection lightweight algorithms are available in ESRORAD dataset. Finally, the dataset is available online. This repository consists of 52 datasets with their respective annotations performed.

Keywords