IJAIN (International Journal of Advances in Intelligent Informatics) (Nov 2023)
Secure medical image watermarking based on reversible data hiding with Arnold's cat map
Abstract
The process of restoring medical images to their original form after the extraction process in application watermarking is crucial for ensuring their authenticity. Inaccurate diagnoses can occur due to distortions in medical images from conventional data embedding applications. To address this issue, reversible data hiding (RDH) method has been proposed by several researchers in recent years to embed data in medical images. After the extraction process, images can be restored to their original form with a reversible data-hiding method. In the past few years, several RDH methods have been rapidly developed, which are based on the concept of difference expansion (DE). However, it is crucial to pay attention to the security of the medical image watermarking method, the embedded data with RDH method can be easily modified, accessed, and altered by unauthorized individuals if they know the employed method. This research suggests a new approach to secure the RDH method through the use of Chaotic Map-based Arnold's Cat Map algorithms on the medical images. Data embedding was performed on random medical images using a DE method. Four gray-scale medical image modalities were used to assess the proposed method's efficacy. In our approach, we can incorporate capacity up to 0.62 bpp while maintaining a visual quality up to 41.02 dB according to PSNR and 0.9900 according to SSIM. The results indicated that it can enhance the security of the RDH method while retaining the ability to embed data and preserving the visual appearance of the medical images.
Keywords