Therapeutic Advances in Gastroenterology (May 2016)
Refining small intestinal bacterial overgrowth diagnosis by means of carbohydrate specificity: a proof-of-concept study
Abstract
Background: Diagnosis of small intestinal bacterial overgrowth (SIBO) remains challenging. This study aimed at proving the diagnostic concept of carbohydrate-specific SIBO (cs-SIBO) using glucose, fructose and sorbitol hydrogen (H 2 )/methane (CH 4 ) breath testing (HMBT). Methods: In this study 125 patients referred to our outpatient clinic for SIBO testing were included. All individuals underwent glucose (50 g), fructose (25 g) and sorbitol (12.5 g) HMBT at 3 consecutive days. Patients with cs-SIBO (i.e. early H 2 /CH 4 peak) were given rifaximin (600 mg/day) in a 10-day treatment. HMBT results were reassessed in a subset of patients 3–6 months after antibiotic therapy. In view of cs-SIBO diagnosis, agreements between HMBT results obtained for different sugars were calculated using Cohen’s kappa (κ) with 95% confidence intervals (CIs). Results: A total of 59 (47.2%) patients presented an early H 2 /CH 4 peak with one or more sugars. Among these, 21 (16.8%), 10 (8.0%) and 7 (5.6%) individuals had a positive HMBT result with either glucose, fructose or sorbitol, respectively. Another 21 (16.8%) patients with a positive glucose HMBT result were also found positive with an early H 2 /CH 4 peak obtained after ingestion of fructose and/or sorbitol. Fair agreement was observed between glucose and fructose (κ = 0.26, p = 0.0018) and between glucose and sorbitol (κ = 0.18, p = 0.0178) HMBT results. Slight agreement was observed between fructose and sorbitol (κ = 0.03, p = 0.6955) HMBT results only. Successful antibiotic therapy with rifaximin could be demonstrated in 26/30 (86.7%) of patients as indicated by normal HMBT results and symptom remission. Conclusions: Combined glucose, fructose and sorbitol HMBT has the potential to optimize cs-SIBO diagnosis. Furthermore, the majority of patients with cs-SIBO seem to benefit from rifaximin therapy regardless of its carbohydrate specificity.