IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2023)

Statistical Texture Learning Method for Monitoring Abandoned Suburban Cropland Based on High-Resolution Remote Sensing and Deep Learning

  • Qianhui Shen,
  • Haojun Deng,
  • Xinjian Wen,
  • Zhanpeng Chen,
  • Hongfei Xu

DOI
https://doi.org/10.1109/JSTARS.2023.3255541
Journal volume & issue
Vol. 16
pp. 3060 – 3069

Abstract

Read online

Cropland abandonment is crucial in agricultural management and has a profound impact on crop yield and food security. In recent years, many cropland abandonment identification methods based on remote sensing observation data have been proposed, but most of these methods are based on coarse-resolution images and use traditional machine learning methods for simple identification. To this end, we perform abandonment recognition on high-resolution remote sensing images. According to the texture features of the abandoned land, we combine the method of statistical texture learning and propose a new deep learning framework called pyramid scene parsing network-statistical texture learning (PSPNet-STL). The model integrates high-level semantic feature extraction and deep mining of low-level texture features to identify cropland abandonment. First, we labeled the abandoned cropland area and built the high-resolution abandoned cropland (HRAC) dataset, a high-resolution cropland abandonment dataset. Second, we improved PSPNet by fusing statistical texture learning modules to learn multiple texture information on low-level feature maps and combined high-level semantic features for cropland abandonment recognition. Experiments are performed on the HRAC dataset. Compared with other methods, the proposed model has the best performance on this dataset, both in terms of accuracy and visualization, proving that deep mining of low-level statistical texture features is beneficial for crop abandonment recognition.

Keywords