Polymer Testing (Jan 2025)
Enhanced oxidation resistance of polyphenylene sulfide using organic–inorganic composite antioxidant via melt blending
Abstract
Polyphenylene sulfide (PPS) has become the primary material for controlling gas emissions at high-temperature; however, the oxidation reactions of sulfur within PPS macromolecules can deteriorate the mechanical properties. In this study, to enhance the oxidation resistance of PPS, composite antioxidants were introduced. Composite antioxidants (GO-sHP) were prepared by chemically grafting semi-hindered phenol antioxidants (sHP) onto graphite oxide (GO) layers and then melt-blending them with PPS resin. The grafting of sHP onto the GO surface was achieved through esterification, which enhanced the thermal stability of GO. The resulting GO-sHP exhibited partial exfoliation and a uniform distribution within the PPS matrix. Owing to heterogeneous nucleation, the introduction of GO-sHP significantly enhanced the crystallinity (from 24.4 % to 59.9 %), crystal perfection and tensile properties (from 88.25 MPa to 97.55 MPa) of PPS. The thermal decomposition residue of PPS increased from 45.1 % to 50.8 % and the dynamic oxidation induction temperature of PPS was also significantly improved (increased by 18.1 °C) by the addition of GO-sHP. Moreover, lower chromatic value changes (from 8.25 to 0.95), higher tensile strength retention (from 94.59 % to 98.57 %) and greater C–S bond content (from 10.9 % to 54.4 %) were achieved after oxidation treatment. Additionally, the antioxidative mechanism of GO-sHP on PPS revealed that GO-sHP inhibits the formation of S=O bonds, retards the breakage of C–S bonds, eliminates the oxidative free radicals, and restricts the diffusion of free radicals and oxidizing substances within the PPS matrix.