Scientific Reports (Nov 2023)
Water filtration by endobenthic sandprawns enhances resilience against eutrophication under experimental global change conditions
Abstract
Abstract Identifying processes that confer resilience against global change is a scientific challenge but is central to managing ecosystem functionality in future. Detecting resilience-enhancing mechanisms is especially relevant in coastal ecosystems, where multi-stressor interactions can drive degradation over time. Here, we quantify the resilience-conferring potential of endobenthic sandprawns against eutrophication, including under high temperatures. We show using a global change mesocosm experiment that sandprawn presence was associated with declines in phytoplankton biomass, particularly under eutrophic conditions, where sandprawns reduced phytoplankton biomass by approximately 74% and prevented a shift to extreme eutrophy. Eutrophic waters were nanophytoplankton-dominated, but sandprawn presence countered this, resulting in even contributions of pico- and nanophytoplankton. Our findings highlight the potential for sandprawns to increase resilience against eutrophication by limiting phytoplankton blooms, preventing extreme eutrophy and counteracting nanophytoplankton dominance. Incorporating endobenthic crustaceans into resilience-based management practices can assist in arresting future water quality declines in coastal ecosystems.