Sensors (Feb 2024)

Optimization of Torque-Control Model for Quasi-Direct-Drive Knee Exoskeleton Robots Based on Regression Forecasting

  • Yuxuan Xia,
  • Wei Wei,
  • Xichuan Lin,
  • Jiaqian Li

DOI
https://doi.org/10.3390/s24051505
Journal volume & issue
Vol. 24, no. 5
p. 1505

Abstract

Read online

The choice of torque curve in lower-limb enhanced exoskeleton robots is a key problem in the control of lower-limb exoskeleton robots. As a human–machine coupled system, mapping from sensor data to joint torque is complex and non-linear, making it difficult to accurately model using mathematical tools. In this research study, the knee torque data of an exoskeleton robot climbing up stairs were obtained using an optical motion-capture system and three-dimensional force-measuring tables, and the inertial measurement unit (IMU) data of the lower limbs of the exoskeleton robot were simultaneously collected. Nonlinear approximations can be learned using machine learning methods. In this research study, a multivariate network model combining CNN and LSTM was used for nonlinear regression forecasting, and a knee joint torque-control model was obtained. Due to delays in mechanical transmission, communication, and the bottom controller, the actual torque curve will lag behind the theoretical curve. In order to compensate for these delays, different time shifts of the torque curve were carried out in the model-training stage to produce different control models. The above model was applied to a lightweight knee exoskeleton robot. The performance of the exoskeleton robot was evaluated using surface electromyography (sEMG) experiments, and the effects of different time-shifting parameters on the performance were compared. During testing, the sEMG activity of the rectus femoris (RF) decreased by 20.87%, while the sEMG activity of the vastus medialis (VM) increased by 17.45%. The experimental results verify the effectiveness of this control model in assisting knee joints in climbing up stairs.

Keywords