Parkinson's Disease (Jan 2011)
VMAT2-Deficient Mice Display Nigral and Extranigral Pathology and Motor and Nonmotor Symptoms of Parkinson's Disease
Abstract
Dopamine is transported into synaptic vesicles by the vesicular monoamine transporter (VMAT2; SLC18A2). Disruption of dopamine storage has been hypothesized to damage the dopamine neurons that are lost in Parkinson's disease. By disrupting vesicular storage of dopamine and other monoamines, we have created a progressive mouse model of PD that exhibits catecholamine neuron loss in the substantia nigra pars compacta and locus coeruleus and motor and nonmotor symptoms. With a 95% reduction in VMAT2 expression, VMAT2-deficient animals have decreased motor function, progressive deficits in olfactory discrimination, shorter latency to behavioral signs of sleep, delayed gastric emptying, anxiety-like behaviors at younger ages, and a progressive depressive-like phenotype. Pathologically, the VMAT2-deficient mice display progressive neurodegeneration in the substantia nigra (SNpc), locus coeruleus (LC), and dorsal raphe (DR) coupled with α-synuclein accumulation. Taken together, these studies demonstrate that reduced vesicular storage of monoamines and the resulting disruption of the cytosolic environment may play a role in the pathogenesis of parkinsonian symptoms and neurodegeneration. The multisystem nature of the VMAT2-deficient mice may be useful in developing therapeutic strategies that go beyond the dopamine system.