The Cryosphere (Sep 2020)
The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6
- H. Goelzer,
- H. Goelzer,
- H. Goelzer,
- S. Nowicki,
- A. Payne,
- E. Larour,
- H. Seroussi,
- W. H. Lipscomb,
- J. Gregory,
- J. Gregory,
- A. Abe-Ouchi,
- A. Shepherd,
- E. Simon,
- C. Agosta,
- P. Alexander,
- P. Alexander,
- A. Aschwanden,
- A. Barthel,
- R. Calov,
- C. Chambers,
- Y. Choi,
- Y. Choi,
- J. Cuzzone,
- C. Dumas,
- T. Edwards,
- D. Felikson,
- X. Fettweis,
- N. R. Golledge,
- R. Greve,
- R. Greve,
- A. Humbert,
- A. Humbert,
- P. Huybrechts,
- S. Le clec'h,
- V. Lee,
- G. Leguy,
- C. Little,
- D. P. Lowry,
- M. Morlighem,
- I. Nias,
- I. Nias,
- I. Nias,
- A. Quiquet,
- M. Rückamp,
- N.-J. Schlegel,
- D. A. Slater,
- D. A. Slater,
- R. S. Smith,
- F. Straneo,
- L. Tarasov,
- R. van de Wal,
- R. van de Wal,
- M. van den Broeke
Affiliations
- H. Goelzer
- Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
- H. Goelzer
- Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, Belgium
- H. Goelzer
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway
- S. Nowicki
- Cryospheric Sciences Laboratory, Goddard Space Flight Center, NASA, Greenbelt, MD 20771, USA
- A. Payne
- Centre for Polar Observation and Modelling, School of Geographical Sciences, University of Bristol, Bristol, UK
- E. Larour
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- H. Seroussi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- W. H. Lipscomb
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80305, USA
- J. Gregory
- National Centre for Atmospheric Science, University of Reading, Reading, UK
- J. Gregory
- Met Office, Hadley Centre, Exeter, UK
- A. Abe-Ouchi
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa-shi, Chiba 277-8564, Japan
- A. Shepherd
- Centre for Polar Observation and Modelling, University of Leeds, Leeds, LS2 9JT, UK
- E. Simon
- Cryospheric Sciences Laboratory, Goddard Space Flight Center, NASA, Greenbelt, MD 20771, USA
- C. Agosta
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- P. Alexander
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
- P. Alexander
- NASA Goddard Institute for Space Studies, New York, NY 10025, USA
- A. Aschwanden
- Geophysical Institute, University of Alaska, Fairbanks, AK 99775, USA
- A. Barthel
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- R. Calov
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- C. Chambers
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- Y. Choi
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- Y. Choi
- Department of Earth System Science, University of California Irvine, CA 92697, USA
- J. Cuzzone
- Department of Earth System Science, University of California Irvine, CA 92697, USA
- C. Dumas
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- T. Edwards
- Department of Geography, King's College London, London, UK
- D. Felikson
- Cryospheric Sciences Laboratory, Goddard Space Flight Center, NASA, Greenbelt, MD 20771, USA
- X. Fettweis
- Laboratory of Climatology, Department of Geography, SPHERES research unit, University of Liège, Liège, Belgium
- N. R. Golledge
- Antarctic Research Centre, Victoria University of Wellington, Wellington, New Zealand
- R. Greve
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
- R. Greve
- Arctic Research Center, Hokkaido University, Sapporo, Japan
- A. Humbert
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- A. Humbert
- Faculty of Geosciences, University of Bremen, Bremen, Germany
- P. Huybrechts
- Earth System Science & Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium
- S. Le clec'h
- Earth System Science & Departement Geografie, Vrije Universiteit Brussel, Brussels, Belgium
- V. Lee
- Centre for Polar Observation and Modelling, School of Geographical Sciences, University of Bristol, Bristol, UK
- G. Leguy
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80305, USA
- C. Little
- Atmospheric and Environmental Research, Inc., Lexington, MA 02421, USA
- D. P. Lowry
- GNS Science, Lower Hutt, New Zealand
- M. Morlighem
- Department of Earth System Science, University of California Irvine, CA 92697, USA
- I. Nias
- Cryospheric Sciences Laboratory, Goddard Space Flight Center, NASA, Greenbelt, MD 20771, USA
- I. Nias
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
- I. Nias
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
- A. Quiquet
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- M. Rückamp
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
- N.-J. Schlegel
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
- D. A. Slater
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
- D. A. Slater
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
- R. S. Smith
- National Centre for Atmospheric Science, University of Reading, Reading, UK
- F. Straneo
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA
- L. Tarasov
- Dept of Physics and Physical Oceanography, Memorial University of Newfoundland, Canada
- R. van de Wal
- Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
- R. van de Wal
- Geosciences, Physical Geography, Utrecht University, Utrecht, the Netherlands
- M. van den Broeke
- Institute for Marine and Atmospheric research Utrecht, Utrecht University, Utrecht, the Netherlands
- DOI
- https://doi.org/10.5194/tc-14-3071-2020
- Journal volume & issue
-
Vol. 14
pp. 3071 – 3096
Abstract
The Greenland ice sheet is one of the largest contributors to global mean sea-level rise today and is expected to continue to lose mass as the Arctic continues to warm. The two predominant mass loss mechanisms are increased surface meltwater run-off and mass loss associated with the retreat of marine-terminating outlet glaciers. In this paper we use a large ensemble of Greenland ice sheet models forced by output from a representative subset of the Coupled Model Intercomparison Project (CMIP5) global climate models to project ice sheet changes and sea-level rise contributions over the 21st century. The simulations are part of the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6). We estimate the sea-level contribution together with uncertainties due to future climate forcing, ice sheet model formulations and ocean forcing for the two greenhouse gas concentration scenarios RCP8.5 and RCP2.6. The results indicate that the Greenland ice sheet will continue to lose mass in both scenarios until 2100, with contributions of 90±50 and 32±17 mm to sea-level rise for RCP8.5 and RCP2.6, respectively. The largest mass loss is expected from the south-west of Greenland, which is governed by surface mass balance changes, continuing what is already observed today. Because the contributions are calculated against an unforced control experiment, these numbers do not include any committed mass loss, i.e. mass loss that would occur over the coming century if the climate forcing remained constant. Under RCP8.5 forcing, ice sheet model uncertainty explains an ensemble spread of 40 mm, while climate model uncertainty and ocean forcing uncertainty account for a spread of 36 and 19 mm, respectively. Apart from those formally derived uncertainty ranges, the largest gap in our knowledge is about the physical understanding and implementation of the calving process, i.e. the interaction of the ice sheet with the ocean.