Bioscience Journal (Dec 2018)
Combined effect of Pseudomonas sp. and Trichoderma aureoviride on lettuce growth promotion
Abstract
Plant growth promotion by microorganisms may be a viable alternative to increase lettuce production through pathogens control and nutrients absorption increase. Trichoderma and Pseudomonas genus are examples of widely studied microorganisms with the capacity to promote plant growth. However, there are still gaps regarding the action of the combined effect of these two microorganisms. Therefore, the objective of this study was to evaluate the combined effect of Pseudomonas sp. UAGF14 and Trichoderma aureoviride URM5158 on the development of lettuce plants. The experimental design was completely randomized, with five treatments: CONT (control), CM (soil with organic fertilization), CMB (soil with organic fertilization and Pseudomonas sp.), CMF (soil with organic fertilization and T. aureoviride), and CMFB (soil with organic fertilization, Pseudomonas sp. and T. aureoviride), with ten repetitions. At 30, 40 and 60 days after sowing, the following parameters were analyzed: plant and canopy height and number of leaves. At 60 days after emergence, shoot dry matter, leaf area, root dry matter, root length and chlorophyll were analyzed. Catalase, peroxidase and polyphenol oxidase enzymatic activity were determined. The CMFB treatment had the highest means of lettuce growth promotion, confirming the synergistic effect of the combination of the two microorganism types, as it increased height, canopy, shoot and root dry matter, and chlorophyll levels compared to CONT, although did not differ from CM in some variables. Enzymatic activity was also influenced by the action of these microorganisms combined, evidencing by polyphenol oxidase increase. The CMFB or CM were efficient in promoting lettuce growth, showing positive response to the plant morphological and physiological characteristics. However, few responses were observed in lettuce plant growth in the first cycle evaluated after 60 days, compared CM and CMFB treatments, but both treatments showed superiority in lettuce plant growth submitted to CONT treatment. Therefore, further studies are needed to estimate the long-term effects of combined effect of Pseudomonas sp. UAGF14 and T. aureoviride URM5158 on crop productivity in field conditions.
Keywords