J (Jan 2022)
Formalising the R of Reduce in a Circular Economy Oriented Design Methodology for Pedestrian and Cycling Bridges
Abstract
The construction industry consumes over 32% of the annually excavated natural resources worldwide. Additionally, it is responsible for 25% of the annually generated solid waste. To become a more sustainable industry, a circular economy is necessary: resources are kept in use as long as possible, aiming to reduce and recirculate natural resources. In this paper, the investigation focuses on pedestrian truss bridges of the types Warren and Howe. Many pedestrian bridges currently find themselves in their end-of-life phase and most commonly these bridges are demolished and rebuilt, thus needing a lot of new materials and energy. The aim is thus first and foremost to reduce the amount of necessary new materials. For this reason, a design tool will be created, using the software ‘Matlab’, in which truss bridges can be evaluated and compared in the conceptual design stage. The tool is based on the theory of morphological indicators: the volume indicator, displacement indicator, buckling indicator and first natural frequency indicator. These allow a designer to determine the most material efficient Warren or Howe truss bridge design with user-defined constraints concerning deflection, load frequency, buckling and overall dimension. Subsequently, the tool was tested and compared to calculations made in the finite element modelling software Diamonds. In total, 72 steel bridge structures were tested. From these it could be concluded that the manual calculations in Diamonds in general confirmed the results obtained with the automated design tool based on morphological indicators. As such, it allows a designer to converge more quickly towards the best performing structure, thus saving time, materials, and corresponding costs and energy.
Keywords