Journal of Inequalities and Applications (Jan 2016)

A note on Hardy-Littlewood maximal operators

  • Mingquan Wei,
  • Xudong Nie,
  • Di Wu,
  • Dunyan Yan

DOI
https://doi.org/10.1186/s13660-016-0963-x
Journal volume & issue
Vol. 2016, no. 1
pp. 1 – 13

Abstract

Read online

Abstract In this paper, we will prove that, for 1 < p < ∞ $1< p<\infty$ , the L p $L^{p}$ norm of the truncated centered Hardy-Littlewood maximal operator M γ c $M^{c}_{\gamma}$ equals the norm of the centered Hardy-Littlewood maximal operator for all 0 < γ < ∞ $0<\gamma<\infty$ . When p = 1 $p=1$ , we also find that the weak ( 1 , 1 ) $(1,1)$ norm of the truncated centered Hardy-Littlewood maximal operator M γ c $M^{c}_{\gamma}$ equals the weak ( 1 , 1 ) $(1,1)$ norm of the centered Hardy-Littlewood maximal operator for 0 < γ < ∞ $0<\gamma<\infty$ . Moreover, the same is true for the truncated uncentered Hardy-Littlewood maximal operator. Finally, we investigate the properties of the iterated Hardy-Littlewood maximal function.

Keywords