Plant Phenome Journal (Dec 2023)
Field‐based infrastructure and cyber–physical system for the study of high night air temperature stress in irrigated rice
Abstract
Abstract High night air temperature (HNT) stress negatively impacts both rice (Oryza sativa L) yield and grain quality and has been extensively investigated because of the significant yield loss observed (10%) for every increase in air temperature (1°C). Most of the rice HNT studies have been conducted under greenhouse conditions, with limited information on field‐level responses for the major rice sub‐populations. This is due to a lack of a field‐based phenotyping infrastructure that can accommodate a diverse set of accessions representing the wider germplasm and impose growth stage‐specific stress. In this study, we built six high‐tunnel greenhouses and screened 310 rice accessions from the Rice Diversity Panel 1 (RDP1) and 10 commercial hybrid cultivars in a replicated design. Each greenhouse had heating and a cyber–physical system that sensed ambient air temperature and automatically increased night air temperature to about 4°C relative to ambient temperature in the field for two cropping seasons. The system successfully imposed HNT stress of 4.0 and 3.94°C as recorded by Raspberry Pi sensors for 2 weeks in 2019 and 2020, respectively. HOBO sensors (Onset Computer Corporation) recorded a 2.9 and 2.07°C temperature differential of ambient air between control and heated greenhouses in 2019 and 2020, respectively. These greenhouses were able to withstand constant flooding, heavy rains, strong winds (140 mph), and thunderstorms. Selected US rice cultivars showed an average of 24% and 15% yield reduction under HNT during the 2019 and 2020 cropping seasons, respectively. Our study highlights the potential of this computer‐based infrastructure for accurate implementation of HNT or other abiotic stresses under field‐growing conditions.