Results in Applied Mathematics (Feb 2024)

Projection-based reduced order modeling of an iterative scheme for linear thermo-poroelasticity

  • Francesco Ballarin,
  • Sanghyun Lee,
  • Son-Young Yi

Journal volume & issue
Vol. 21
p. 100430

Abstract

Read online

This paper explores an iterative approach to solve linear thermo-poroelasticity problems, with its application as a high-fidelity discretization utilizing finite elements during the training of projection-based reduced order models. One of the main challenges in addressing coupled multi-physics problems is the complexity and computational expenses involved. In this study, we introduce a decoupled iterative solution approach, integrated with reduced order modeling, aimed at augmenting the efficiency of the computational algorithm. The iterative technique we employ builds upon the established fixed-stress splitting scheme that has been extensively investigated for Biot’s poroelasticity. By leveraging solutions derived from this coupled iterative scheme, the reduced order model employs an additional Galerkin projection onto a reduced basis space formed by a small number of modes obtained through proper orthogonal decomposition. The effectiveness of the proposed algorithm is demonstrated through numerical experiments, showcasing its computational prowess.

Keywords