Journal of Big Data (Mar 2021)
An analysis of COVID-19 economic measures and attitudes: evidence from social media mining
Abstract
Abstract This paper explores the public perception of economic measures implemented as a reaction to the COVID-19 pandemic in Poland in March–June 2020. A mixed-method approach was used to analyse big data coming from tweets and Facebook posts related to the mitigation measures to provide evidence for longitudinal trends, correlations, theme classification and perception. The online discussion oscillated around political and economic issues. The implementation of the anti-crisis measures triggered a barrage of criticism pointing out the shortcomings and ineffectiveness of the solutions. The revised relief legislation was accompanied by a wide-reaching informative campaign about the relief package, which decreased negative sentiment. The analysis also showed that with regard to online discussion about risk mitigation, social media users are more concerned about short-term economic and social effects rather than long-term effects of the pandemic. The findings have significant implications for the understanding of public sentiment related to the COVID-19 pandemic, economic attitudes and relief support implemented to fight the adverse effects of the pandemic.
Keywords