The Journal of Clinical Investigation (Feb 2022)

Targeting the ASMase/S1P pathway protects from sortilin-evoked vascular damage in hypertension

  • Paola Di Pietro,
  • Albino Carrizzo,
  • Eduardo Sommella,
  • Marco Oliveti,
  • Licia Iacoviello,
  • Augusto Di Castelnuovo,
  • Fausto Acernese,
  • Antonio Damato,
  • Massimiliano De Lucia,
  • Fabrizio Merciai,
  • Paola Iesu,
  • Eleonora Venturini,
  • Raffaele Izzo,
  • Valentina Trimarco,
  • Michele Ciccarelli,
  • Giuseppe Giugliano,
  • Roberto Carnevale,
  • Vittoria Cammisotto,
  • Serena Migliarino,
  • Nicola Virtuoso,
  • Andrea Strianese,
  • Viviana Izzo,
  • Pietro Campiglia,
  • Elena Ciaglia,
  • Bodo Levkau,
  • Annibale A. Puca,
  • Carmine Vecchione

Journal volume & issue
Vol. 132, no. 3

Abstract

Read online

Sortilin has been positively correlated with vascular disorders in humans. No study has yet evaluated the possible direct effect of sortilin on vascular function. We used pharmacological and genetic approaches coupled with study of murine and human samples to unravel the mechanisms recruited by sortilin in the vascular system. Sortilin induced endothelial dysfunction of mesenteric arteries through NADPH oxidase 2 (NOX2) isoform activation, dysfunction that was prevented by knockdown of acid sphingomyelinase (ASMase) or sphingosine kinase 1. In vivo, recombinant sortilin administration induced arterial hypertension in WT mice. In contrast, genetic deletion of sphingosine-1-phosphate receptor 3 (S1P3) and gp91phox/NOX2 resulted in preservation of endothelial function and blood pressure homeostasis after 14 days of systemic sortilin administration. Translating these research findings into the clinical setting, we detected elevated sortilin levels in hypertensive patients with endothelial dysfunction. Furthermore, in a population-based cohort of 270 subjects, we showed increased plasma ASMase activity and increased plasma levels of sortilin, S1P, and soluble NOX2-derived peptide (sNOX2-dp) in hypertensive subjects, and the increase was more pronounced in hypertensive subjects with uncontrolled blood pressure. Our studies reveal what we believe is a previously unrecognized role of sortilin in the impairment of vascular function and in blood pressure homeostasis and suggest the potential of sortilin and its mediators as biomarkers for the prediction of vascular dysfunction and high blood pressure.

Keywords