Journal of Materiomics (May 2021)

Design strategies for MOF-derived porous functional materials: Preserving surfaces and nurturing pores

  • Ximeng Liu,
  • Lei Zhang,
  • John Wang

Journal volume & issue
Vol. 7, no. 3
pp. 440 – 459

Abstract

Read online

MOFs are among the most popular precursors and templates for deriving various porous materials, where the derivatives can inherit a large surface area, abundant active sites for targeted functionalities and a high degree of porosity inherited from their parent MOFs. Those unique structural features make them promising candidates in multiple applications. More interestingly, the structure and properties of these MOF derivatives can be modulated by the choice of the parent MOFs and the design in the conversion process. In this overview, the transformation pathways from MOFs into their porous derivatives, the principles underlying these transformations, and the behavior of the MOF components in the transition process are discussed. Recently, there has been tremendous progress in preserving and enhancing the surface area, the amount of active sites and the level of porosity of the MOF-derived materials for targeted applications, from the perspectives of both customizing the parent MOFs and tailoring the transformation process. To develop the rationally designed MOF-derived materials and thus to elucidate the precursor-process-product correlations, some typical examples of the MOF derivatives applied in electrochemical energy storage and conversion, water treatment, gas sensing, and biomedicine are discussed to demonstrate the effectiveness of the key design strategies.

Keywords