Open Geosciences (Aug 2020)

Landscape pattern and economic factors’ effect on prediction accuracy of cellular automata-Markov chain model on county scale

  • Song Wang,
  • Yunlin Zhao,
  • Zhenggang Xu,
  • Guiyan Yang,
  • Tian Huang,
  • Nan Ma

DOI
https://doi.org/10.1515/geo-2020-0162
Journal volume & issue
Vol. 12, no. 1
pp. 626 – 636

Abstract

Read online

Understanding and modeling of land use change is of great significance to environmental protection and land use planning. The cellular automata-Markov chain (CA-Markov) model is a powerful tool to predict the change of land use, and the prediction accuracy is limited by many factors. To explore the impact of land use and socio-economic factors on the prediction of CA-Markov model on county scale, this paper uses the CA-Markov model to simulate the land use of Anren County in 2016, based on the land use of 1996 and 2006. Then, the correlation between the land use, socio-economic data and the prediction accuracy was analyzed. The results show that Shannon’s evenness index and population density having an important impact on the accuracy of model predictions, negatively correlate with kappa coefficient. The research not only provides a reference for correct use of the model but also helps us to understand the driving mechanism of landscape changes.

Keywords