Zbornik Matice Srpske za Prirodne Nauke (Jan 2017)

Antimicrobial activity of essential oils and fruits supplement in reduced nitrite salts condition

  • Vujadinović Dragan P.,
  • Golić Bojan M.,
  • Tomović Vladimir M.,
  • Gojković Vesna S.,
  • Vukić Milan S.,
  • Grujić Radoslav D.

DOI
https://doi.org/10.2298/ZMSPN1733251V
Journal volume & issue
Vol. 2017, no. 133
pp. 251 – 260

Abstract

Read online

Because of the growing negative perception of consumers related to the use of meat products produced by conventional curing methods, organic and natural products are increasingly accepted by consumers. Such products contain a large number of natural products derived from plants, spices, as well as their derivatives in form of essential oils, extracts, concentrates, and so on. These derivatives contain large number of active substances which are known to inhibit the metabolic processes of bacteria, yeasts and molds. Therefore, the goal of this paper was to investigate the synergistic antimicrobial activity of the models with a reduced presence of nitrite salt in aqueous solution, emulsions of essential oils in varying concentrations in vivo via antibiogram tests on pathogenic microorganisms. The effect of the six model groups was analyzed. Two groups were fruit powder solutions in concentrations of 0.2% to 1.2% (Acerola powder and fruit powder mix), while the other four groups were models of aqueous emulsion of essential oil in concentrations ranging from 0.05% to 1.2% (tea tree, clove, oregano, and cinnamon essential oils). In all models reduced amount of the sodium salt of 1.80%, 0.0075% nitrite salt and the liquid derivative as a natural source of the nitrate salt of 3% were used. Antibiogram tests were performed on five pathogenic bacteria (C. perfringens, E. coli, S. enterica, L. monocytogenes, and S. aureus). All antibiogram tests were performed according to Kirby-Bauer disk diffusion protocol. Results of antibiograms showed that without the presence of additional antimicrobial agents, in model systems with reduced content of salts, inhibition zones were not detected. Additionally, models with essential oils of tea tree oil and oregano had the widest inhibition zone diameters, ranging from 17.76±0.48mm for E. coli up to 42.50±0.13mm for S. aureus.

Keywords