PLoS Genetics (Sep 2021)
CSYseq: The first Y-chromosome sequencing tool typing a large number of Y-SNPs and Y-STRs to unravel worldwide human population genetics.
Abstract
Male-specific Y-chromosome (chrY) polymorphisms are interesting components of the DNA for population genetics. While single nucleotide polymorphisms (Y-SNPs) indicate distant evolutionary ancestry, short tandem repeats (Y-STRs) are able to identify close familial kinships. Detailed chrY analysis provides thus both biogeographical background information as paternal lineage identification. The rapid advancement of high-throughput massive parallel sequencing (MPS) technology in the past decade has revolutionized genetic research. Using MPS, single-base information of both Y-SNPs as Y-STRs can be analyzed in a single assay typing multiple samples at once. In this study, we present the first extensive chrY-specific targeted resequencing panel, the 'CSYseq', which simultaneously identifies slow mutating Y-SNPs as evolution markers and rapid mutating Y-STRs as patrilineage markers. The panel was validated by paired-end sequencing of 130 males, distributed over 65 deep-rooted pedigrees covering 1,279 generations. The CSYseq successfully targets 15,611 Y-SNPs including 9,014 phylogenetic informative Y-SNPs to identify 1,443 human evolutionary Y-subhaplogroup lineages worldwide. In addition, the CSYseq properly targets 202 Y-STRs, including 81 slow, 68 moderate, 27 fast and 26 rapid mutating Y-STRs to individualize close paternal relatives. The targeted chrY markers cover a high average number of reads (Y-SNP = 717, Y-STR = 150), easy interpretation, powerful discrimination capacity and chrY specificity. The CSYseq is interesting for research on different time scales: to identify evolutionary ancestry, to find distant family and to discriminate closely related males. Therefore, this panel serves as a unique tool valuable for a wide range of genetic-genealogical applications in interdisciplinary research within evolutionary, population, molecular, medical and forensic genetics.