Energies (May 2021)
Analysis of Caprock Tightness for CO<sub>2</sub> Enhanced Oil Recovery and Sequestration: Case Study of a Depleted Oil and Gas Reservoir in Dolomite, Poland
Abstract
This study addresses the problem of geological structure tightness for the purposes of enhanced oil recovery with CO2 sequestration. For the first time in the history of Polish geological survey the advanced methods, practical assumptions, and quantitative results of detailed simulations were applied to study the geological structure of a domestic oil reservoir as a potential candidate for a combined enhanced oil recovery and CO2 sequestration project. An analysis of the structure sequestration capacity and its tightness was performed using numerical methods that combined geomechanical and reservoir fluid flow modelling with a standard two-way coupling procedure. By applying the correlation between the geomechanical state and transport properties of the caprock, threshold pressure variations were determined to be a key factor affecting the sealing properties of the reservoir–caprock boundary. In addition to the estimation of the sequestration capacity of the structure, the process of CO2 leakage from the reservoir to the caprock was simulated for scenarios exceeding the threshold pressure limit of the reservoir–caprock boundary. The long-term simulations resulted in a comprehensive assessment of the total amount of CO2 leakage as a function of time and the leaked CO2 distribution within the caprock.
Keywords