Foods (Aug 2024)

Identifying Key Markers for Monofloral (Eucalyptus, Rosemary, and Orange Blossom) and Multifloral Honey Differentiation in the Spanish Market by UHPLC-Q-Orbitrap-High-Resolution Mass Spectrometry Fingerprinting and Chemometrics

  • Araceli Rivera-Pérez,
  • Alba María Navarro-Herrera,
  • Antonia Garrido Frenich

DOI
https://doi.org/10.3390/foods13172755
Journal volume & issue
Vol. 13, no. 17
p. 2755

Abstract

Read online

Honey differentiation based on the botanical origin is crucial to guarantee product authenticity, especially considering the increasing number of fraud cases. This study assessed the metabolomic differences arising from various botanical origins in honey products sold in Spanish markets, focusing on two goals: (1) discrimination within monofloral samples (eucalyptus, rosemary, and orange blossom honey) and (2) differentiation between multifloral vs. monofloral honey samples. An omics strategy based on ultra-high-performance liquid chromatography coupled with quadrupole-Orbitrap-high-resolution mass spectrometry (UHPLC-Q-Orbitrap-HRMS) was applied for the reliable identification of specific honey markers selected by orthogonal partial least squares discriminant analysis (OPLS-DA) (R2Y = 0.929–0.981 and Q2 = 0.868–0.952), followed by the variable importance in projection (VIP) approach. Key amino acid, alkaloid, and trisaccharide markers were identified to distinguish between honey samples. Some Amadori compounds were highlighted as eucalyptus honey markers, suggesting their potential use for honey aging and botanical origin differentiation. L-phenylalanine and raffinose were markers of rosemary honey. Four markers (e.g., trigonelline, L-isoleucine, and N-(1-deoxy-1-fructosyl)isoleucine) were found in higher levels in multifloral samples, indicating a greater availability of amino acids, potentially increasing the Maillard reaction. This research is the first to address the botanical origin’s impact on honey by identifying novel markers not previously described.

Keywords