Scientific Reports (Apr 2023)

Self-healing perovskite solar cells based on copolymer-templated TiO2 electron transport layer

  • Nakisa Lalpour,
  • Valiollah Mirkhani,
  • Reza Keshavarzi,
  • Majid Moghadam,
  • Shahram Tangestaninejad,
  • Iraj Mohammadpoor-Baltork,
  • Peng Gao

DOI
https://doi.org/10.1038/s41598-023-33473-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Inorganic hole-transport materials (HTMs) such as copper indium disulfide (CIS) have been applied in perovskite solar cells (PSCs) to improve the poor stability of the conventional Spiro-based PSCs. However, CIS-PSCs' main drawback is their lower efficiency than Spiro-PSCs. In this work, copolymer-templated TiO2 (CT-TiO2) structures have been used as an electron transfer layer (ETL) to improve the photocurrent density and efficiency of CIS-PSCs. Compared to the conventional random porous TiO2 ETLs, copolymer-templated TiO2 ETLs with a lower refractive index improve the transmittance of input light into the cell and therefore enhance the photovoltaic performance. Interestingly, a large number of surface hydroxyl groups on the CT-TiO2 induce a self-healing effect in perovskite. Thus, they provide superior stability in CIS-PSC. The fabricated CIS-PSC presents a conversion efficiency of 11.08% (Jsc = 23.35 mA/cm2, Voc = 0.995, and FF = 0.477) with a device area of 0.09 cm2 under 100 mW/cm2. Moreover, these unsealed CIS-PSCs retained 100% of their performance after aging tests for 90 days under ambient conditions and even increased from 11.08 to 11.27 over time due to self-healing properties.