Heliyon (Nov 2024)
Stability, challenges, and prospects of chitosan for the delivery of anticancer drugs and tissue regenerative growth factors
Abstract
Chitosan, a biopolymer derived from chitin, offers significant potential for regulated anticancer drug administration and tissue regeneration growth factors, owing to its biocompatibility, low toxicity, biodegradability, and little immunogenicity. Moreover, its structure can be extensively modified, for example, to create scaffolds, hydrogels, nanoparticles, and membranes, allowing it to be engineered precisely to achieve specific outcomes However, the therapeutic utilisation of chitosan is impeded by significant challenges, such as its inadequate hemocompatibility, durability, and uniformity in commercial manufacturing. Additionally, there is insufficient research offering a thorough examination of the capabilities, limitations, and challenges related to chitosan as carriers for anticancer drugs and growth factors. This article examines the stability, challenges, and advanced application of chitosan as a drug carrier in anti-cancer therapy and growth factor delivery. The problems of unregulated chitosan degradation arising from unsuitable storage conditions are considered and potential solutions, and areas for future research, are proposed to deal with such problems. Consequently, this review is expected to be highly valuable for aspiring scientists studying chitosan-related systems for delivery of anti-cancer drugs and growth factors.