Applied Sciences (Nov 2022)

Improving Lignocellulosic and Non-Lignocellulosic Biomass Characteristics through Torrefaction Process

  • Maja Ivanovski,
  • Danijela Urbancl,
  • Aleksandra Petrovič,
  • Janja Stergar,
  • Darko Goričanec,
  • Marjana Simonič

DOI
https://doi.org/10.3390/app122312210
Journal volume & issue
Vol. 12, no. 23
p. 12210

Abstract

Read online

In this study, three locally available biomasses, namely miscanthus, hops, sewage sludge, and additionally, their mixtures, were subjected to the torrefaction process to improve their fuel properties. The torrefaction process was conducted at 250–350 °C and 10–60 min in a nitrogen (N2) environment. The torrefaction temperature and time were studied to evaluate the selected biomass materials; furthermore, heating values, mass and energy yields, enhancement factors, torrefaction severity indexes (TSI), and energy-mass co-benefit indexes (EMCI) were calculated. In addition, thermogravimetric (TGA) and Fourier transform infrared analyses (FTIR) were performed to characterize raw and torrefied biomass under the most stringent conditions (350 °C and 60 min). The results showed that with increasing torrefaction temperature and duration, mass and energy yields decreased, and heating values (HHVs) increased for all studied biomasses. The results of the TSI and EMCI indexes showed that the optimum torrefaction conditions were as follows: 260 °C and 10 min for pure miscanthus and hops, whilst this could not be confirmed for the sewage sludge. Furthermore, the combination of sewage sludge and the above-mentioned types of lignocellulosic biomass exhibited better fuel properties than sewage sludge alone.

Keywords