Pharmacological Research (Jun 2023)
S-sulfhydration of SIRT3 combats BMSC senescence and ameliorates osteoporosis via stabilizing heterochromatic and mitochondrial homeostasis
Abstract
Senescence of bone marrow mesenchymal stem cells (BMSCs) is one of the leading causes of osteoporosis. SIRT3, an essential NAD-dependent histone deacetylase, is highly correlated with BMSC senescence-mediated bone degradation and mitochondrial/heterochromatic disturbance. S-sulfhydration of cysteine residues favorably enhances SIRT3 activity by forming persulfides. Nevertheless, the underlying molecular mechanism of SIRT3 S-sulfhydration on mitochondrial/heterochromatic homeostasis involved in BMSC senescence remains unknown. Here, we demonstrated that CBS and CSE, endogenous hydrogen sulfide synthases, are downregulated with BMSC senescence. Exogenous H2S donor NaHS-mediated SIRT3 augmentation rescued the senescent phenotypes of BMSCs. Conversely, SIRT3 deletion accelerated oxidative stress-induced BMSC senescence through mitochondrial dysfunction and the detachment of the heterochromatic protein H3K9me3 from the nuclear envelope protein Lamin B1. H2S-mediated SIRT3 S-sulfhydration modification rescued the disorganized heterochromatin and fragmented mitochondria induced by the S-sulfhydration inhibitor dithiothreitol, thus leading to elevated osteogenic capacity and preventing BMSC senescence. The antisenescence effect of S-sulfhydration modification on BMSCs was abolished when the CXXC sites of the SIRT3 zinc finger motif were mutated. In vivo, aged mice-derived BMSCs pretreated with NaHS were orthotopically transplanted to the ovariectomy-induced osteoporotic mice, and we proved that SIRT3 ameliorates bone loss by inhibiting BMSC senescence. Overall, our study for the first time indicates a novel role of SIRT3 S-sulfhydration in stabilizing heterochromatin and mitochondrial homeostasis in counteracting BMSC senescence, providing a potential target for the treatment of degenerative bone diseases.