EJNMMI Research (Aug 2018)

Patient-specific image-based bone marrow dosimetry in Lu-177-[DOTA0,Tyr3]-Octreotate and Lu-177-DKFZ-PSMA-617 therapy: investigation of a new hybrid image approach

  • Astrid Gosewisch,
  • Andreas Delker,
  • Sebastian Tattenberg,
  • Harun Ilhan,
  • Andrei Todica,
  • Julia Brosch,
  • Lena Vomacka,
  • Anika Brunegraf,
  • Franz Josef Gildehaus,
  • Sibylle Ziegler,
  • Peter Bartenstein,
  • Guido Böning

DOI
https://doi.org/10.1186/s13550-018-0427-z
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background The bone marrow (BM) is a main organ at risk in Lu-177-PSMA-617 therapy of prostate cancer and Lu-177-Octreotate therapy of neuroendocrine tumours. BM dosimetry is challenging and time-consuming, as different sequential quantitative measurements must be combined. The BM absorbed dose from the remainder of the body (ROB) can be determined from sequential whole-body planar (WB-P) imaging, while quantitative Lu-177-SPECT allows for more robust tumour and organ absorbed doses. The aim was to investigate a time-efficient and patient-friendly hybrid protocol (HP) for the ROB absorbed dose to the BM. It combines three abdominal quantitative SPECT (QSPECT) scans with a single WB-P acquisition and was compared with a reference protocol (RP) using sequential WB-P in combination with sequential QSPECT images. We investigated five patients receiving 7.4 GBq Lu-177-Octreotate and five patients treated with 3.7 GBq Lu-177-PSMA-617. Each patient had WB-P and abdominal SPECT acquisitions 24 (+ CT), 48, and 72 h post-injection. Blood samples were drawn 30 min, 80 min, 24 h, 48 h, and 72 h post-injection. BM absorbed doses from the ROB were estimated from sequential WB-P images (RP), via a mono-exponential fit and mass-scaled organ-level S values. For the HP, a mono-exponential fit on the QSPECT data was scaled with the activity of one WB-P image acquired either 24, 48, or 72 h post-injection (HP24, HP48, HP72). Total BM absorbed doses were determined as a sum of ROB, blood, major organ, and tumour contributions. Results Compared with the RP and for Lu-177-Octreotate therapy, median differences of the total BM absorbed doses were 13% (9–17%), 8% (4–15%), and 1% (0–5%) for the HP24, HP48, and HP72, respectively. For Lu-177-PSMA-617 therapy, total BM absorbed doses deviated 10% (2–20%), 3% (0–6%), and 2% (0–6%). Conclusion For both Lu-177-Octreotate and Lu-177-PSMA-617 therapy, BM dosimetry via sequential QSPECT imaging and a single WB-P acquisition is feasible, if this WB-P image is acquired at a late time point (48 or 72 h post-injection). The reliability of the HP can be well accepted considering the uncertainties of quantitative Lu-177 imaging and BM dosimetry using standardised organ-level S values.

Keywords