Energies (Mar 2021)

LCC-S-Based Integral Terminal Sliding Mode Controller for a Hybrid Energy Storage System Using a Wireless Power System

  • Naghmash Ali,
  • Zhizhen Liu,
  • Hammad Armghan,
  • Iftikhar Ahmad,
  • Yanjin Hou

DOI
https://doi.org/10.3390/en14061693
Journal volume & issue
Vol. 14, no. 6
p. 1693

Abstract

Read online

Unlike the plug-in charging system, which has safety concerns such as electric sparks, wireless power transfer (WPT) is less-time consuming, is environmentally friendly and can be used in a wet environment. The inclusion of hybrid energy storage systems (HESSs) in electric vehicles (EVs) has helped to increase their energy density as well as power density. Combined with static wireless power transfer, a WPT–HESS system is proposed in this article. The HESS system includes a battery and supercapacitor (SC) connected to a WPT system through DC–DC converters. To ensure a stable DC bus voltage, an inductor–capacitor–capacitor series (LCC-S) compensation network has been implemented in the WPT system. Utilizing the two-port network theory, the design equations of the LCC-S compensation network are derived in order to realize the maximum efficiency point for the WPT system. To ensure that the WPT system operates at this maximum efficiency point and that the SC is charged to its maximum capacity, an energy management system (EMS) has been devised that generates reference currents for both the SC and battery. An integral terminal sliding mode controller (ITSMC) has been designed to track these reference currents and control the power flow between the energy storage units (ESUs) and WPT system. The stability of the proposed system is validated by Lyapunov theory. The proposed WPT–HESS system is simulated using the MATLAB/Simulink. The robustness of the ITSMC against the widely used proportional–integral–derivative (PID) and sliding mode controller (SMC) is verified under abrupt changes in the associated ESU resistance and reference load current. Finally, the simulations of the WPT–HESS system are validated by controller hardware-in-loop (C-HIL) experiments.

Keywords