Energies (Sep 2017)

Global Gust Climate Evaluation and Its Influence on Wind Turbines

  • Christopher Jung,
  • Dirk Schindler,
  • Alexander Buchholz,
  • Jessica Laible

DOI
https://doi.org/10.3390/en10101474
Journal volume & issue
Vol. 10, no. 10
p. 1474

Abstract

Read online

Strong gusts negatively affect wind turbines in many ways. They (1) harm their structural safety; (2) reduce their wind energy output; and (3) lead to a shorter wind turbine rotor blade fatigue life. Therefore, the goal of this study was to provide a global assessment of the gust climate, considering its influence on wind turbines. The gust characteristics analyzed were: (1) the gust speed return values for 30, 50 and 100 years; (2) the share of gust speed exceedances of cut-out speed; and (3) the gust factor. In order to consider the seasonal variation of gust speed, gust characteristics were evaluated on a monthly basis. The global monthly wind power density was simulated and geographical restrictions were applied to highlight gust characteristics in areas that are generally suitable for wind turbine installation. Gust characteristics were computed based on ERA-interim data on a 1° × 1° spatial resolution grid. After comprehensive goodness-of-fit evaluation of 12 theoretical distributions, Wakeby distribution was used to compute gust speed return values. Finally, the gust characteristics were integrated into the newly developed wind turbine gust index. It was found that the Northeastern United States and Southeast Canada, Newfoundland, the southern tip of South America, and Northwestern Europe are most negatively affected by the impacts of gusts. In regions where trade winds dominate, such as eastern Brazil, the Sahara, southern parts of Somalia, and southeastern parts of the Arabian Peninsula, the gust climate is well suitable for wind turbine installation.

Keywords