International Journal for Parasitology: Drugs and Drug Resistance (Aug 2024)
Lower micromolar activity of the antifungal imidazoles on the bacterial-type bifunctional aldehyde/alcohol dehydrogenase (AdhE) in Cryptosporidium parvum and in vitro efficacy against the zoonotic parasite
Abstract
Cryptosporidium parvum is a waterborne and foodborne zoonotic protozoan parasite, a causative agent of moderate to severe diarrheal diseases in humans and animals. However, fully effective treatments are unavailable for medical and veterinary uses. There is a need to explore new drug targets for potential development of new therapeutics. Because C. parvum relies on anaerobic metabolism to produce ATP, fermentative enzymes in this parasite are attractive targets for exploration. In this study, we investigated the ethanol-fermentation in the parasite and characterized the basic biochemical features of a bacterial-type bifunctional aldehyde/alcohol dehydrogenase, namely CpAdhE. We also screened 3892 chemical entries from three libraries and identified 14 compounds showing >50% inhibition on the enzyme activity of CpAdhE. Intriguingly, antifungal imidazoles and unsaturated fatty acids are the two major chemical groups among the top hits. We further characterized the inhibitory kinetics of selected imidazoles and unsaturated fatty acids on CpAdhE. These compounds displayed lower micromolar activities on CpAdhE (i.e., IC50 values ranging from 0.88 to 11.02 μM for imidazoles and 8.93 to 35.33 μM for unsaturated fatty acids). Finally, we evaluated the in vitro anti-cryptosporidial efficacies and cytotoxicity of three imidazoles (i.e., tioconazole, miconazole and isoconazole). The three antifungal imidazoles exhibited lower micromolar efficacies against the growth of C. parvum in vitro (EC50 values ranging from 4.85 to 10.41 μM and selectivity indices ranging from 5.19 to 10.95). The results provide a proof-of-concept data to support that imidazoles are worth being further investigated for potential development of anti-cryptosporidial therapeutics.