Plants (Sep 2022)
Single and Associated Effects of Drought and Heat Stresses on Physiological, Biochemical and Antioxidant Machinery of Four Eggplant Cultivars
Abstract
The impact of heat and drought stresses, either individually or combined, on physiological and biochemical parameters of four eggplant varieties (Solanum melongena L.) was investigated. The results showed that associated stress generated the highest increment in proline content, MDA concentration, and H2O2 accumulation and generated the lowest increment in RWC. In addition, ‘Bonica’ and ‘Galine’ exhibited higher starch accumulation and lower electrolyte leakage (EL) under combined stress. Moreover, drought and heat stresses applied individually contributed to a substantial decline in Chla, Chlb, total Chl, Chla/b, and carotenoids (p > 0.05) in ‘Adriatica’ and ‘Black Beauty’. The decreasing level of pigments was more substantial under associated drought and heat stresses. The simultaneous application of drought and heat stresses reduced PSII efficiency (Fv/Fm), quantum yield (ΦPSII), and photochemical efficiency (qp) and boosted non-photochemical quenching (NPQ) levels. However, the change recorded in the chlorophyll fluorescence parameters was less pronounced in ‘Bonica’ and ‘Galine’. In addition, the gas exchange parameters, transpiration rate (E), CO2 assimilation rate (A), and net photosynthesis (Pn) were decreased in all varieties under all stress conditions. However, the reduction was more pronounced in ‘Adriatica’ and ‘Black Beauty’. Under associated stress, antioxidant enzymes, SOD, APX, CAT, and GR exhibited a significant increment in all eggplant cultivars. However, the rising was more elevated in ‘Bonica’ and ‘Galine’ (higher than threefold increase) than in ‘Adriatica’ and ‘Black Beauty’ (less than twofold increase). Furthermore, ‘Bonica’ and ‘Galine’ displayed higher non-enzyme scavenging activity (AsA and GSH) compared to ‘Adriatica’ and ‘Black Beauty’ under associated stress. Under stressful conditions, nutrient uptake was affected in all eggplant cultivars; however, the root, stem, and leaf N, P, and K contents, in ‘Adriatica’ and ‘Black Beauty’ were lower than in ‘Bonica’ and ‘Galine’, thereby showing less capacity in accumulating nutrients. The coexistence of drought and heat stresses caused more damage on eggplant varieties than the single appearance of drought or heat stress separately. ‘Bonica’ and ‘Galine’ showed better distinguished performance compared to ‘Adriatica’ and ‘Black Beauty’. The superiority of ‘Bonica’ and ‘Galine’ in terms of tolerance to heat and drought stresses was induced by more effective antioxidant scavenging potential, enhanced osmolyte piling-up, and prominent ability in keeping higher photosynthetic efficiency and nutrient equilibrium compared with ‘Adriatica’ and ‘Black Beauty’.
Keywords