Epidemics (Mar 2023)
A novel method to jointly estimate transmission rate and decay rate parameters in environmental transmission models
Abstract
In environmental transmission, pathogens transfer from one individual to another via the environment. It is a common transmission mechanism in a wide range of host-pathogen systems. Incorporating environmental transmission in dynamic transmission models is crucial for gauging the effect of interventions, as extrapolating model results to new situations is only valid when the mechanisms are modelled correctly. The challenge in environmental transmission models lies in not jointly identifiable parameters for pathogen shedding, decay, and transmission dynamics. To solve this unidentifiability issue, we present a stochastic environmental transmission model with a novel scaling method for shedding rate parameter and a novel estimation method that distinguishes transmission rate and decay rate parameters. The core of our scaling and estimation method is calculating exposure and relating exposure to infection risks. By scaling shedding rate parameter, we standardize exposure to pathogens contributed by one infectious individual present during one time interval to one. The standardized exposure leads to a standard definition of transmission rate parameter applicable to scenarios with different decay rate parameters. Hence, we unify direct transmission (large decay rate) and environmental transmission in a continuous manner. More importantly, our exposure-based estimation method can correctly estimate back the transmission rate and the decay rate parameters, while the commonly used trajectory-based method failed. The reason is that exposure-based method gives the correct weight to infection data from previous observation periods. The correct estimation from exposure-based method will lead to more reliable predictions of intervention impact. Using the effect of disinfection as an example, we show how incorrectly estimated parameters may lead to incorrect conclusions about the effectiveness of interventions. This illustrates the importance of correct estimation of transmission rate and decay rate parameters for extrapolating environmental transmission models and predicting intervention effects.