Polymers (Mar 2023)

Fabrication of 3D Printed Polylactic Acid/Polycaprolactone Nanocomposites with Favorable Thermo-Responsive Cyclic Shape Memory Effects, and Crystallization and Mechanical Properties

  • Hao Liu,
  • Chengdi Li,
  • Simin Chen,
  • Ping Chen,
  • Jinbo Li,
  • Huihua Jian,
  • Guoyi Guo,
  • Xiao Chen,
  • Xiaofeng Zhu,
  • Jun Wu

DOI
https://doi.org/10.3390/polym15061533
Journal volume & issue
Vol. 15, no. 6
p. 1533

Abstract

Read online

In this work, 3D printed polylactic acid (PLA)/polycaprolactone (PCL) nanocomposites with favorable thermo-responsive cyclic shape memory effects (SMEs) and crystallization and mechanical properties were fabricated using a two-step method. First, an isocyanate-terminated PCL diol (PCL-NCO) was synthesized through the reaction between isocyanate groups of hexamethylene diisocyanate and active hydroxyl groups of PCL diol, and its physicochemical properties were characterized. A PLA/PCL blend with a PCL content of 50 wt% was fabricated via fused filament fabrication (FFF) 3D printing, and the influence of the PCL-NCO on the SME of the PLA/PCL blend was studied. The results indicated that the PCL-NCO significantly improved the cyclic shape memory performance of 3D printed PLA/PCL blends and was proved to be an effective interface compatibilizer for the blend system. Subsequently, the structure and properties of 3D printed PLA/PCL nanocomposites were investigated in detail by adding cellulose nanocrystal-organic montmorillonite (CNC-OMMT) hybrid nanofillers with different contents. It was found that the hybrid nanofillers greatly enhanced crystallization and mechanical properties of the nanocomposites due to adequate dispersion. The modification of the PLA/PCL blend and the preparation of the 3D printed nanocomposite can not only prolong the service life of a shape memory polymer product, but also broaden its application scope in advanced fields.

Keywords