Department of Electrical, Computer, and Systems Engineering, and Center of Integrated Electronics, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
Time-resolved photoreflectance (PR) in AlInN/GaN heterostructures was applied to study carrier dynamics at energies extending from the uniform AlInN alloy band gap to the band gap of GaN. PR at the AlInN band gap has been found to have subpicosecond decay. Such ultrafast carrier relaxation from the extended to the sub-band edge states implies that the localization sites are small and dense, most probably originating from the In-rich clusters. At energies below the AlInN band gap, a complicated energy dependence of the PR signal is attributed to the properties of the localized states and to the modulation of the interface electric field by photoexcitation.