BMC Microbiology (Aug 2004)

Towards the development of a DNA-sequence based approach to serotyping of <it>Salmonella enterica</it>

  • Logan Julie MJ,
  • Gharbia Saheer E,
  • Peters Tansy M,
  • Mortimer Chloe KB,
  • Arnold Catherine

DOI
https://doi.org/10.1186/1471-2180-4-31
Journal volume & issue
Vol. 4, no. 1
p. 31

Abstract

Read online

Abstract Background The fliC and fljB genes in Salmonella code for the phase 1 (H1) and phase 2 (H2) flagellin respectively, the rfb cluster encodes the majority of enzymes for polysaccharide (O) antigen biosynthesis, together they determine the antigenic profile by which Salmonella are identified. Sequencing and characterisation of fliC was performed in the development of a molecular serotyping technique. Results FliC sequencing of 106 strains revealed two groups; the g-complex included those exhibiting "g" or "m,t" antigenic factors, and the non-g strains which formed a second more diverse group. Variation in fliC was characterised and sero-specific motifs identified. Furthermore, it was possible to identify differences in certain H antigens that are not detected by traditional serotyping. A rapid short sequencing assay was developed to target serotype-specific sequence motifs in fliC. The assay was evaluated for identification of H1 antigens with a panel of 55 strains. Conclusion FliC sequences were obtained for more than 100 strains comprising 29 different H1 alleles. Unique pyrosequencing profiles corresponding to the H1 component of the serotype were generated reproducibly for the 23 alleles represented in the evaluation panel. Short read sequence assays can now be used to identify fliC alleles in approximately 97% of the 50 medically most important Salmonella in England and Wales. Capability for high throughput testing and automation give these assays considerable advantages over traditional methods.