Cell Transplantation (Jan 2016)

The Paracrine Effect of Skeletal Myoblasts is Cardioprotective against Oxidative Stress and Involves EGFR-ErbB4 Signaling, Cystathionase, and the Unfolded Protein Response

  • Antti Siltanen,
  • Kristo Nuutila,
  • Yukiko Imanishi,
  • Hisazumi Uenaka,
  • Johanna Mäkelä,
  • Tommi Pätilä,
  • Antti Vento,
  • Shigeru Miyagawa,
  • Yoshiki Sawa,
  • Ari Harjula,
  • Esko Kankuri

DOI
https://doi.org/10.3727/096368915X688254
Journal volume & issue
Vol. 25

Abstract

Read online

Therapeutic effects of skeletal myoblast transplantation into the myocardium are mediated via paracrine factors. We investigated the ability of myoblast-derived soluble mediators to protect cardiomyocytes from oxidative stress. Fetal rat cardiac cells were treated with conditioned medium from cultures of myoblasts or cardiac fibroblasts, and oxidative stress was induced with H 2 O 2 . Myoblast-derived factors effectively prevented oxidative stress-induced cardiac cell death and loss of mitochondrial membrane potential. This protective effect was mediated via epidermal growth factor (EGF) receptor and c-Met signaling, and mimicked by neuregulin 1 but not EGF. Microarray analysis of cardiac cells treated with myoblast versus cardiac fibroblast-derived mediators revealed differential regulation of genes associated with antioxidative effects: cystathionine-γ-lyase (est), xanthine oxidase, and thioredoxin-interacting protein as well as nibbles homolog 3 (trib3). Cardiac cell pretreatment with tunicamycin, an inducer of trib3, also protected them against H 2 O 2 -induced cell death. Epicardial transplantation of myoblast sheets in a rat model of acute myocardial infarction was used to evaluate the expression of CST and trib3 as markers of myoblasts' paracrine effect in vivo. Myoblast sheets induced expression of the CST as well as trib3 in infarcted myocardium. CST localized around blood vessels, suggesting smooth muscle cell localization. Our results provide a deeper molecular insight into the therapeutic mechanisms of myoblast-derived paracrine signaling in cardiac cells and suggest that myoblast transplantation therapy may prevent oxidative stress-induced cardiac deterioration and progression of heart failure.