NAMPT mitigates colitis severity by supporting redox-sensitive activation of phagocytosis in inflammatory macrophages
Sun Mi Hong,
A-Yeon Lee,
Sung-Min Hwang,
Yu-Jin Ha,
Moo-Jin Kim,
Seongki Min,
Won Hwang,
Gyesoon Yoon,
So Mee Kwon,
Hyun Goo Woo,
Hee-Hoon Kim,
Won-Il Jeong,
Han-Ming Shen,
Sin-Hyeog Im,
Dakeun Lee,
You-Sun Kim
Affiliations
Sun Mi Hong
Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
A-Yeon Lee
Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
Sung-Min Hwang
Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
Yu-Jin Ha
Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
Moo-Jin Kim
Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
Seongki Min
Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
Won Hwang
MSBIOTECH. LTD, Chungbuk, 27672, Republic of Korea
Gyesoon Yoon
Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
So Mee Kwon
Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
Hyun Goo Woo
Department of Biomedical Sciences, Graduate School of Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Department of Physiology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea
Hee-Hoon Kim
Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
Won-Il Jeong
Laboratory of Liver Research, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
Han-Ming Shen
Faculty of Health Sciences, University of Macau, Macau, China
Sin-Hyeog Im
Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; ImmunoBiome, Bio Open Innovation Center, Pohang, 37673, Republic of Korea
Dakeun Lee
Department of Pathology, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Corresponding author. Department of Pathology, Ajou University School of Medicine164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea.
You-Sun Kim
Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Department of Biomedical Sciences, Graduate School of Ajou University, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea; Corresponding author. Department of Biochemistry, Ajou University School of Medicine, 164 Worldcup-ro, Yeongtong-gu, Suwon, Gyeonggi-do, 16499, Republic of Korea.
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway and plays a crucial role in the maintenance of the NAD+ pool during inflammation. Considering that macrophages are essential for tissue homeostasis and inflammation, we sought to examine the functional impact of NAMPT in inflammatory macrophages, particularly in the context of inflammatory bowel disease (IBD). In this study, we show that mice with NAMPT deletion within the myeloid compartment (Namptf/fLysMCre+/-, Nampt mKO) have more pronounced colitis with lower survival rates, as well as numerous uncleared apoptotic corpses within the mucosal layer. Nampt-deficient macrophages exhibit reduced phagocytic activity due to insufficient NAD+ abundance, which is required to produce NADPH for the oxidative burst. Nicotinamide mononucleotide (NMN) treatment rescues NADPH levels in Nampt mKO macrophages and sustains superoxide generation via NADPH oxidase. Consequently, Nampt mKO mice fail to clear dead cells during tissue repair, leading to substantially prolonged chronic colitis. Moreover, systemic administration of NMN, to supply NAD+, effectively suppresses the disease severity of DSS-induced colitis. Collectively, our findings suggest that activation of the NAMPT-dependent NAD+ biosynthetic pathway, via NMN administration, is a potential therapeutic strategy for managing inflammatory diseases.