PLoS ONE (Jan 2015)

Down-Regulation of miR-92 in Breast Epithelial Cells and in Normal but Not Tumour Fibroblasts Contributes to Breast Carcinogenesis.

  • Laura Smith,
  • Euan W Baxter,
  • Philip A Chambers,
  • Caroline A Green,
  • Andrew M Hanby,
  • Thomas A Hughes,
  • Claire E Nash,
  • Rebecca A Millican-Slater,
  • Lucy F Stead,
  • Eldo T Verghese,
  • Valerie Speirs

DOI
https://doi.org/10.1371/journal.pone.0139698
Journal volume & issue
Vol. 10, no. 10
p. e0139698

Abstract

Read online

MicroRNA (miR) expression is commonly dysregulated in many cancers, including breast. MiR-92 is one of six miRs encoded by the miR-17-92 cluster, one of the best-characterised oncogenic miR clusters. We examined expression of miR-92 in the breast epithelium and stroma during breast cancer progression. We also investigated the role of miR-92 in fibroblasts in vitro and showed that down-regulation in normal fibroblasts enhances the invasion of breast cancer epithelial cells.We used laser microdissection (LMD) to isolate epithelial cells from matched normal, DCIS and invasive tissue from 9 breast cancer patients and analysed miR-92 expression by qRT-PCR. Expression of ERβ1, a direct miR-92 target, was concurrently analysed for each case by immunohistochemistry. LMD was also used to isolate matched normal (NFs) and cancer-associated fibroblasts (CAFs) from 14 further cases. Effects of miR-92 inhibition in fibroblasts on epithelial cell invasion in vitro was examined using a Matrigel™ assay. miR-92 levels decreased in microdissected epithelial cells during breast cancer progression with highest levels in normal breast epithelium, decreasing in DCIS (p<0.01) and being lowest in invasive breast tissue (p<0.01). This was accompanied by a shift in cell localisation of ERβ1 from nuclear expression in normal breast epithelium to increased cytoplasmic expression during progression to DCIS (p = 0.0078) and invasive breast cancer (p = 0.031). ERβ1 immunoreactivity was also seen in stromal fibroblasts in tissues. Where miR-92 expression was low in microdissected NFs this increased in matched CAFs; a trend also seen in cultured primary fibroblasts. Down-regulation of miR-92 levels in NFs but not CAFs enhanced invasion of both MCF-7 and MDA-MB-231 breast cancer epithelial cells.miR-92 is gradually lost in breast epithelial cells during cancer progression correlating with a shift in ERβ1 immunoreactivity from nuclei to the cytoplasm. Our data support a functional role in fibroblasts where modification of miR-92 expression can influence the invasive capacity of breast cancer epithelial cells. However in silico analysis suggests that ERβ1 may not be the most important miR-92 target in breast cancer.